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Figure 1: StreetNav is a system that explores the concept of repurposing existing street cameras to support precise outdoor
navigation for blind and low-vision (BLV) pedestrians. It comprises two components: (i) a computer vision (CV) pipeline,
and (ii) a companion smartphone app. The computer vision pipeline processes the street camera’s video feeds and delivers
real-time navigation feedback via the app. StreetNav offers precise turn-by-turn directions to destinations while also providing
real-time, scene-aware assistance to prevent users from veering off course, alert them of nearby obstacles, and facilitate safe
street crossings.
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ABSTRACT
Blind and low-vision (BLV) people rely on GPS-based systems for
outdoor navigation. GPS’s inaccuracy, however, causes them to
veer off track, run into unexpected obstacles, and struggle to reach
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precise destinations. While prior work has made precise navigation
possible indoors via additional hardware installations, enabling
precise navigation outdoors remains a challenge. Ironically, many
outdoor environments of interest such as downtown districts are
already instrumented with hardware such as street cameras. In
this work, we explore the idea of repurposing street cameras for
outdoor navigation, and investigate the effectiveness of such an
approach. Our resulting system, StreetNav, processes the cameras’
video feeds using computer vision and gives BLV pedestrians real-
time navigation assistance. Our user evaluations in the COSMOS
testbed with eight BLV pedestrians show that StreetNav guides
them more precisely than GPS, but its performance is sensitive
to lighting conditions and environmental occlusions. We discuss
future implications for deploying such systems at scale.

CCS CONCEPTS
• Human-centered computing→ Accessibility systems and
tools.
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1 INTRODUCTION
Outdoor navigation in unfamiliar environments is amajor challenge
for blind and low-vision (BLV) people. Among the many navigation
systems that have been developed to assist BLV people outdoors,
GPS-based systems are the most popular [28, 31, 41, 58, 64]. These
systems, such as BlindSquare [41] and Microsoft Soundscape [28],
guide users to a destination and notify them of surrounding points
of interest (POIs). Despite GPS’s undeniable impact in making out-
door environments navigable, its imprecision is a major limita-
tion [56]. GPS precision can range from 5 meters at best to over
tens of meters in urban areas with buildings and trees [23, 42, 65].
This imprecision causes BLV people to veer off track [49], run
into unexpected obstacles [8, 50, 52], and struggle to reach precise
destinations [56] when navigating outdoors.

Prior work on indoor navigation, on the contrary, has made pre-
cise navigation assistance possible for BLV people [2, 19, 34, 44, 57].
Most approaches do so by installing a dense network of additional
hardware, such as Bluetooth [2] or WiFi [19] beacons, to precisely
locate a user’s position. Retrofitting outdoor environments with
additional hardware, however, is not feasible due to the vast scale
and complex nature of outdoor spaces. It would require extensive
financial investments and coordination with city authorities to in-
stall and maintain such specialized hardware, which may not be
possible.

Ironically, many outdoor environments of interest, such as ur-
ban districts and downtown areas, are already instrumented with
hardware that has the potential to help, including street cameras,
traffic sensors, and other urban infrastructure components. Street
cameras, in particular, are increasingly being installed in cities for
public safety, surveillance, and traffic management-related applica-
tions [4, 11, 18, 36, 39]. Although these pre-existing street cameras
have been deployed for purposes unrelated to accessibility, their po-
tential for facilitating navigation assistance for BLV people remains
largely untapped.

In this work, we explore the idea of leveraging existing street
cameras to support outdoor navigation assistance, and we investi-
gate the effectiveness of such an approach. We seek to answer the
following research questions:

RQ1. What challenges do BLV people face when navigating out-
doors using GPS-based systems?

RQ2. How should street camera-based systems be designed to
address BLV people’s challenges in outdoor navigation?

RQ3. To what extent do street camera-based systems address BLV
people’s challenges in outdoor navigation?

To answer RQ1, we conducted formative interviews with six BLV
pedestrians and discovered the challenges BLV people face when
navigating outdoors using GPS-based systems. Our participants
reported challenges in following GPS’s routing instructions through
complex environment layouts, avoiding unexpected obstacles while
using assistive technology, and crossing streets safely.

To answer RQ2, we developed StreetNav, a system that leverages
a street camera to support precise outdoor navigation for BLV
pedestrians. As Figure 1 illustrates, StreetNav comprises two key
components: (i) a computer vision pipeline and (ii) a companion
smartphone app. The computer vision pipeline processes the street
camera’s video feed and delivers real-time navigation assistance to
BLV pedestrians via the smartphone app. StreetNav offers precise
turn-by-turn directions to destinations while also providing real-
time, scene-aware assistance to prevent users from veering off
course, alert them of nearby obstacles, and facilitate safe street
crossings. We developed StreetNav using the NSF PAWR COSMOS
wireless edge-cloud testbed [55, 68]. StreetNav uses one of COSMOS
testbed’s street cameras mounted on the second floor of Columbia
University’s Mudd building in New York City (NYC), which faces a
four-way street intersection.

To answer RQ3, we conducted user evaluations involving eight
BLV pedestrians who navigated routes with both StreetNav and
BlindSquare [41], a popular GPS-based navigation app especially
designed for BLV people. Our findings reveal that StreetNav offers
significantly greater precision in guiding pedestrians compared to
BlindSquare. Specifically, StreetNav guided participants to within
an average of 2.9 times closer to their destination and reduced veer-
ing off course by over 53% when compared to BlindSquare. This
substantial improvement was reflected in the unanimous prefer-
ence of all participants for StreetNav over BlindSquare in a forced
ranking. Our evaluation, however, also revealed technical consider-
ations related to StreetNav’s performance, notably its sensitivity to
lighting conditions and environmental occlusions. We discuss the
future implications of our findings in the context of deploying street
camera-based systems at scale for outdoor navigation assistance.
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In summary, we contribute (1) a formative study of BLV people’s
challenges in outdoor navigation using GPS-based systems, (2) the
StreetNav system through which we explore the concept of repur-
posing street cameras for precise outdoor navigation assistance,
and (3) a user evaluation of StreetNav.

2 RELATEDWORK
Our work builds on the following three main research threads: (i)
outdoor navigation approaches, (ii) overhead camera-based robot
navigation, and (iii) indoor navigation approaches.

Outdoor Navigation Approaches. Existing approaches for out-
door navigation primarily rely on GPS-based navigation systems for
guiding users to the destination and providing information about
nearby POIs [28, 31, 41, 58, 64]. BlindSquare[41], for instance, uti-
lizes the smartphone’s GPS signal to determine the user’s location
and then provides the direction and distance to the destination,
gathered from Foursquare and Open Street Map. The GPS signal,
however, offers poor precision with localization errors as big as
tens of meters [2, 23, 42, 69]. The accuracy is lower in densely
populated cities [66], which is even more concerning given that a
disproportionately high percentage of BLV people live in cities [27].
Despite GPS-based systems’ undeniable impact on helping BLV
people in outdoor navigation, their low precision and inability to
provide real-time support for avoiding obstacles and veering off
the path limits their usability as a standalone navigation solution.
Our preliminary work on StreetNav [29] introduced the alternative
of leveraging street cameras for outdoor navigation assistance. In
this work, we investigate street cameras’ potential for providing
precise and real-time navigation assistance by performing a user
experience evaluation of StreetNav.

Another approach for outdoor navigation has explored devel-
oping personalized, purpose-built, assistive devices that support
BLV people with scene-aware aspects of outdoor navigation, such
as crossing streets [26, 37, 61], recording routes [69], and avoid-
ing obstacles [15, 16, 32, 38, 54, 67]. While these solutions address
some of the precise and real-time aspects of BLV people’s outdoor
navigation, support for point-to-point navigation is missing. Conse-
quently, they do not offer a comprehensive, all-in-one solution for
outdoor navigation. Furthermore, these systems place the burden
of purchasing costly devices onto the BLV users. Our work, by
contrast, explores the possibility of using existing street cameras to
provide a comprehensive solution for outdoor navigation. We inves-
tigate repurposing existing hardware in outdoor environments to
support accessibility applications, thus imbuing accessibility within
the city infrastructure directly, and adding no additional cost to the
BLV user.

OverheadCamera-basedRobotNavigation. Aparallel research
space to street cameras for blind navigation is robot navigation
using overhead cameras. One common subspace within this field is
sensor fusion for improved mapping. Research in this space focuses
on fusing information between sighted “guide” robots and overhead
cameras [10], fusing multiple camera views for improved track-
ing [10, 48, 51], and improving homography for robust mapping,
independent of camera viewing angle [59, 60]. Another challenge
tackled within this space is robot path planning. Research in this

space aims to improve path planning algorithms [10, 48, 60], assign
navigational tasks to robot assistants [10, 48], and address the bal-
ance between obstacle avoidance and path following [10, 60]. While
prior work on robot navigation using fixed cameras explores the
research space of automating “blind” robot navigation, our work
explores how fixed cameras, specifically street cameras, could be
repurposed to support navigation for blind pedestrians. Our work
considers BLV users’ needs and preferences around outdoor naviga-
tion to design and develop a system that can offer precise navigation
assistance.

Indoor Navigation Approaches. Prior work in indoor naviga-
tion assistance has made significant progress through the utiliza-
tion of various localization technologies, which usually relies on
retrofitting the environment with additional hardware like WiFi or
Bluetooth beacons [2, 19, 34, 44, 57]. These solutions have proven
highly effective within indoor environments. NavCog3 [2], for ex-
ample, excels in indoor navigation by employing Bluetooth beacons
for precise turn-by-turn guidance. Nakajima and Haruyama [44]
exploit the use of visible lights communication technology, utiliz-
ing LED lights and a geomagnetic correction method to localize
BLV users. However, extending these approaches to support out-
door navigation is not practical. This is particularly evident when
considering the substantial initial investment in hardware setup
that these systems typically require, making them ill-suited for the
larger, unstructured outdoor environment. Furthermore, most of
these methods lack the capability to assist with obstacle avoidance
and to prevent users from veering off course — both of which are
less severe issues indoors compared to outdoors [49]. In contrast,
our exploration of using existing street cameras is better suited to
address the largely unaddressed challenge of outdoor pedestrian
navigation. This approach offers precise localization without re-
quiring supplementary hardware, harnessing street cameras for
locating a pedestrian’s position. Additionally, it holds the potential
to effectively tackle the distinctive challenges posed by the unstruc-
tured nature of outdoor environments, including real-time obstacle
detection and the interpretation of critical visual cues like street
crossing signals.

3 FORMATIVE INTERVIEWS
We conducted semi-structured interviews with six BLV participants
to identify BLV pedestrians’ challenges in outdoor navigation when
using GPS-based systems (RQ1).

3.1 Methods
Participants. We recruited six BLV participants (three males and
three females, aged 29–66) by posting on social media platforms
and snowball sampling [22]. Table 1 summarises the participants’
information. All interviews were conducted over Zoom and lasted
about 90 minutes. Participants were compensated $25 for this IRB-
approved study.

Procedure. To identify the specific challenges that BLV people
face when navigating outdoors, we used a recent critical incident
technique (CIT) [17], in which we asked participants to recall and
describe a recent time when they navigated outdoor environments
using GPS-based assistive technology (AT). For example, we first
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Table 1: Self-reported demographics of our participants. Gender information was collected as a free response; our participants
identified themselves as female (F) or male (M). Participants rated their assistive technology (AT) familiarity on a scale of 1–5.

PID Age Gender Race Occupation Vision ability Onset Mobility aid AT familiarity (1–5)

F1 29 Female White Claims expert Totally blind At birth White cane 3: Moderately familiar
F2 61 Female White Retired Light perception only Age 6 Guide dog 1: Not at all familiar
F3 66 Female White Retired Totally blind Age 58 Guide dog 2: Slightly familiar
F4 48 Male Black Unemployed Light perception only Age 32 White cane 3: Moderately familiar
F5 27 Male Mixed Unemployed Totally blind At birth White cane 3: Moderately familiar
F6 38 Male White AT instructor Totally blind At birth White cane 5: Extremely familiar

asked participants to name the AT they commonly use and then
asked them to elaborate on their recent experience of using it: “So,
you mentioned using BlindSquare a lot. When was the last time you
used it?” Then, we initiated a discussion by establishing the scenario
for them: “Now, let’s walk through your visit from the office to this
restaurant. Suppose, I spotted you at your office.What would I observe?
Let’s start with you getting out of your office building.” We asked
follow-up questions to gain insights into what made the aspects of
outdoor navigation challenging and what additional information
could help address them.

InterviewAnalysis. To analyze the interviews, we first transcribed
the study sessions in full and then performed thematic analysis [9]
involving three members of our research team. Each researcher first
independently went through the interview transcripts and used
NVivo [47] to create an initial set of codes. Then, all three iterated
on the codes together to identify emerging themes.

3.2 Findings: BLV Pedestrians’ Challenges in
Outdoor Navigation

We found three major themes around challenges that BLV pedestri-
ans face when navigating outdoors using GPS-based systems.

C1: Routing through complex environment layouts. GPS-
based systems, such as BlindSquare [41], offer navigation instruc-
tions that follow a direct path to the destination from the user’s
current position, often referred to as “as the crow flies,” rather
than providing detailed turn-by-turn instructions through a poly-
line path that guide BLV people through the environment layout.
Since “not everything is organized in the ideal grid-like way” (F1),
participants reported difficulties following the “as the crow flies” in-
structions, failing to confidently act upon the instructions without
any knowledge of the environment layout. This was particularly
challenging in complex layouts, as F3 recalled: “I didn’t know if
crosswalks were straight or curved or if they were angled. [It was
hard] to figure out which way you needed to be to be in the cross-
walk.” Many participants cited problems such as making the wrong
turns into unexpected “alleyways” (F1, F2, F4) that landed them in
dangerous situations with “cars coming through” (F2). Participants
cited examples about how these instructions were often inaccurate,
causing them to veer off course—a common issue for BLV people in
open, outdoor space [49]—and end up in the middle of the streets.

C2: Avoiding unexpected obstacles while using GPS-based
systems. BLV people’s challenges relating to obstacles during nav-
igation are well researched [50, 52]. However, we found specific
nuances in their difficulties, particularly when they rely on their
conventional mobility aids in conjunction with GPS-based naviga-
tion systems. Participants commonly reported the use of mobility
aids like white canes alongside GPS systems for guidance. During
this combined navigation process, they encountered difficulties in
maintaining their focus on obstacle detection, often resulting in col-
lisions with objects that they would have otherwise detected using
their white canes. For instance, F2 shared an incident where they
remarked, “there were traffic cones [and] I tripped over those” while
following directions. Notably, moving obstacles such as pedestrians
and cars, as well as temporarily positioned stationary obstacles
like triangle sandwich board signs, posed significant challenges for
navigation. F4 expressed this sentiment, stating, “You know how
many times I’ve walked into the sides of cars even though I have the
right of way. Drivers have gotten angry, accusing me of scratching
their vehicles. It can spoil your day [and make] you feel insecure.”

C3: Crossing street intersections safely. Consistent with prior
research [3, 26, 40], our study participants highlighted that crossing
streets remained a significant challenge for them. Since GPS-based
systems do not help with street-crossing, most participants relied
on their auditory senses. They mentioned the practice of listening
for vehicular sounds to gauge traffic flow on streets running parallel
and perpendicular to their position. This auditory technique helped
them assess when it was safe to cross streets. However, participants
also reported instances where this method proved inadequate due
to external factors: “yeah, it can be tricky, because [there may be] re-
ally loud construction nearby that can definitely throw me off because
I’m trying to listen to the traffic” (F1). Furthermore, their confidence
in street-crossing decisions was affected by their inability to as-
certain the duration of pedestrian signals and the length of the
crosswalk. This uncertainty led to apprehension, as they expressed
a fear of becoming stranded mid-crossing, as exemplified by one
participant’s comment: “I don’t want to be caught in the middle [of
the street]” (F4).

4 THE STREETNAV SYSTEM
StreetNav is a system that explores the concept of repurposing street
cameras to support outdoor navigation for BLV pedestrians (RQ2,
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Figure 2: Street camera used for StreetNav’s development and
evaluation. The COSMOS camera [13, 68] is (a) mounted on
the second floor of Columbia University’s Mudd building in
NYC, and (b) captures the view of a four-way intersection.

RQ3). It provides users precise turn-by-turn navigation instruc-
tions to destinations (C1), helps prevent veering off track (C1), gain
awareness of nearby obstacles (C2), and assist in crossing streets
safely (C3). StreetNav enables these navigation affordances through
its two main components: (i) computer vision pipeline, and (ii) com-
panion smartphone app. The computer vision pipeline processes
the street camera’s video feeds to give BLV pedestrians real-time
navigation feedback via the app. Our design and development of
StreetNav considers prior work on navigation assistance, functions
of traditional mobility aids, and formative interviews with BLV peo-
ple (Section 3) that identified challenges they face when navigating
outdoors using existing GPS-based systems.

The following sections describe StreetNav’s technical setup (Sec-
tion 4.1), the computer vision pipeline (Section 4.2), and the smart-
phone app’s user interface (Section 4.3).

4.1 StreetNav: Technical Setup
Figure 2 shows the street camera we used for developing and evalu-
ating StreetNav. We chose this camera because it faces a four-way
street intersection—the most common type of intersection—and is
mounted on a building’s second floor, offering a typical street-level
view of the intersection. The camera is part of the NSF PAWR COS-
MOS wireless edge-cloud testbed [55, 68]. Anonymized video sam-
ples from COSMOS cameras, including the one used in this work,
can be found online [13]. StreetNav’s computer vision pipeline
takes the real-time video feed from the camera as input. For this
purpose, we deployed the computer vision pipeline on one of COS-
MOS’ computational servers, which captures the camera’s video
feed in real time [20, 21]. This server runs Ubuntu 20.04 with an
Intel Xeon CPU@2.60GHz and an Nvidia V100 GPU.

StreetNav’s two components—the computer vision pipeline and
the app—interact with each other via a cloud server, sharing infor-
mation using the MQTT messaging protocol [43]. Since MQTT is
a lightweight messaging protocol, it runs efficiently even in low-
bandwidth environments. The computer vision pipeline only sends
processed navigation information (e.g., routing instructions, ob-
stacle’s category and location) to the app, rather than sending
video data. This alleviates any privacy concerns around streaming
the video feed to the users and avoids any computational bottle-
necks that may happen due to smartphones’ limited processing

Figure 3: Gesture-based localization for determining a user’s
position on the map. (a) A study participant (P1) is (c)
prompted to wave one hand above their head, enabling the
computer vision pipeline to distinguish them from other
pedestrians in (b) the camera feed view and (d) the map.

capabilities. The StreetNav app’s primary purpose is to act as an
interface between the user and the computer vision pipeline. We de-
veloped StreetNav’s iOS App using Swift [6], enabling us to leverage
VoiceOver [7] and other built-in accessibility features.

4.2 StreetNav: Computer Vision Pipeline
StreetNav’s computer vision pipeline processes the street camera’s
video feed in real time to facilitate navigation assistance. It consists
of four components: (i) localizing and tracking the user: locating
user’s position on the environment’s map; (ii) planning routes: gen-
erating turn-by-turn navigation instructions from user’s current
position to destinations; (iii) identifying obstacles: predicting po-
tential collisions with other pedestrians, vehicles, and objects (e.g.,
trash can, pole); and (iv) recognizing pedestrian signals: determining
when it is safe for pedestrians to cross (walk vs. wait) and calcu-
lating the duration of each cycle. Next, we describe the computer
vision pipeline’s four components in detail.

Localizing and tracking the user. To offer precise navigation
assistance, the system must first determine the user’s position from
the camera view and then project it onto the environment’s map.
Figure 3d shows the map representation we used, which is a snap-
shot from Apple Maps’ [5] satellite view of the intersection where
the camera is deployed.

StreetNav tracks pedestrians from the camera’s video feed using
Nvidia’s DCF-based multi-object tracker [45] and the YOLOv8 ob-
ject detector [63]. The computer vision pipeline is developed using
Nvidia GStreamer plugins [46, 62], enabling hardware-accelerated
video processing to achieve real-time tracking.We chose this tracker
for its trade-off between real-time performance and robustness to
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Figure 4: StreetNav’s internal graph representation for route
planning. The user’s current position is added dynamically
as a start node to the graph upon choosing a destination. The
shortest path, highlighted in green, is then calculated as per
this graph representation.

occlusions. The tracker detects all pedestrians and assigns them
a unique ID. However, the system needs a way to differentiate
between the BLV user and other pedestrians.

Figure 3 shows the gesture-based localization approach we in-
troduced to address this issue. To connect with the system, BLV
pedestrians must wave one hand above their head for 2–3 seconds
(Figure 3a), enabling the system to determine the BLV pedestrian’s
unique tracker ID. We chose this gesture after discussions with
several BLV individuals, including our BLV co-author, and most
agreed that this single-handed action was both convenient and
socially acceptable to them. Moreover, over-the-head gestures such
as waving a hand can also be detected when users are not directly
facing the street camera.

StreetNav implements the gesture-based localization approach
by first creating image crops of all detected pedestrians and then
classifying them as ‘waving’ or ‘walking’ pedestrians using CLIP [53].
CLIP classifies each pedestrian by computing visual similarity be-
tween the pedestrian’s image crop and two language prompts: ‘per-
son walking’ and ‘person waving hand.’ We experimentally fine-
tuned the confidence thresholds and these language prompts. We
also tried other action recognition models, such as MMaction2 [12],
but found that our CLIP-based approach wasmuch faster and robust
to false positives.

Finally, we transformed the user’s position on the street camera
view (Figure 3b) onto the map (Figure 3d) using a simple feed-
forward neural network, trained on data that we manually anno-
tated. The network takes as input the 2D pixel coordinate from the
street camera view and outputs the corresponding 2D coordinate on
the map. StreetNav continuously tracks the user from the camera
feed and transforms its position onto the map.

Planning routes. StreetNav represents routes as a sequence of
straight lines on the map connected by waypoints. To plan routes,
StreetNav requires that a map of the environment is annotated with
waypoints and connections between them. This offline process

Figure 5: Identifying obstacles in the user’s vicinity. (a) A
vehicle turning left yields to the BLV pedestrian (detected
in purple) crossing the street. (b) StreetNav identifies the ob-
stacles’ category and relative location on the map to provide
real-time feedback via the app.

is performed by manually annotating the environment’s map, as
shown in Figure 4. The administrator marks two types of points
on the map: POIs and sidewalk corners. The POIs are potential
destinations that users can choose from. The sidewalk corners
act as intermediary waypoints en route to the destination. We
chose sidewalk corners as waypoints because BLV pedestrians often
look for the tactile engravings at sidewalk corners to help orient
themselves and transition into crosswalks. Thus, these waypoints
blend in well with BLV users’ current navigation practices.

Figure 4 shows the internal graph structure that StreetNav uses
for planning routes. This graph-based representation of the envi-
ronment has also been used in prior work on indoor navigation
systems [2, 25, 57]. In the graph, nodes correspond to POIs and
sidewalk corners, whereas edges correspond to walkable paths.
Once the user chooses a destination from the POIs, StreetNav adds
the user’s current position as a start node to this graph represen-
tation and computes the shortest path to the chosen POI using
A∗ algorithm [14]. Figure 4 highlights the shortest path from the
user’s current position to the chosen destination (café). This route
enables StreetNav to guide users to the destination via turn-by-turn
instructions.

Identifying obstacles. Prior work on obstacle avoidance devel-
oped systems that guide BLV people around obstacles [25, 33].
StreetNav, however, aims to augment BLV pedestrians’ awareness
of obstacles to help them confidently avoid obstacles using their tra-
ditional mobility aids (e.g., white cane) and mobility skills. From our
formative interviews, we learned that obstacles that catch BLV users
unexpectedly were specifically hard to avoid in outdoor environ-
ments (C2). Thus, StreetNav provides users with information about
the obstacle’s category and relative location. This gives BLV users
context on the size, shape, and location of an obstacle, enabling
them to confidently use their mobility skills around unexpected
obstacles.

Figure 5 illustrates how the system identifies obstacles in the
user’s vicinity. StreetNav’s multi-object tracker is used to track
other objects and pedestrians. Examples of other objects include
cars, bicycles, poles, and trash cans. The computer vision pipeline
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Figure 6: Recognizing pedestrian signal states from the cam-
era’s video feed. StreetNav compares the number of white
and red pixels in the signal crops to determine its state: (a)
walk vs. (b) wait.

then projects the detected objects’ positions onto the map. To iden-
tify obstacles in the BLV user’s vicinity, StreetNav computes the
distance and angle between the user and other detected objects with
respect to the map (Figure 5b). Any object (or pedestrian) within
a fixed radial distance from the BLV user is flagged as an obstacle.
Through a series of experiments with our BLV co-author, we found
that a 4 foot radius works best for StreetNav to provide users with
awareness of obstacles in a timely manner.

Recognizing pedestrian signals. To determine the pedestrian
signals’ state (i.e., walk vs. wait), we leverage the fact that walk
signals are always white, whereas wait signals are always red in
color. StreetNav requires the pixel locations of the pedestrian sig-
nals in the video feed in order to recognize the signal state. The
administrator annotates the video feed image to draw a bounding
box around the pedestrian signals’ screen. Since the position of
pedestrian signals is fixed with respect to the mounted street cam-
era, this process needs to be done only once during setup, along
with the map annotation process described earlier.

Figure 6 shows the annotated pedestrian signals in the camera’s
video feed. StreetNav uses these annotations first to generate image
crops of the two signals and then threshold both image crops to filter
all red and white pixels. It compares the number of white and red
pixels in each crop to identify the signal’s state: walk (Figure 6a) vs.
wait (Figure 6b). We experimentally fine-tuned the count thresholds
to accurately identify the signal state. Although the two crops are
low resolution, this approach still yields accurate results since it
distinguishes the state using pixel colors.

Our formative interviews found that BLV pedestrians faced dif-
ficulty pacing themselves while crossing streets (C3). To address
this challenge, StreetNav provides users with information about
how much time remains for them to cross. StreetNav’s computer
vision pipeline computes the time remaining to cross by keeping
track of the signal cycles’ duration. StreetNav maintains a timer
that records the moments when each signal changes its state. After
observing a full cycle, StreetNav is able to accurately keep track
of both the state and timing of each signal. StreetNav periodically
refreshes the timer to adapt to any changes in signal duration that
may happen for traffic management reasons.

4.3 StreetNav App: User Interface
The StreetNav iOS app interacts with the computer vision pipeline
to allow BLV pedestrians to choose a destination and receive real-
time navigation feedback that guides them to it. BLV users first
initiate a connection request through the app, which activates
the gesture-based localization (Section 4.2) in the computer vision
pipeline. The app prompts the user to wave one hand over their
head (Figure 3b), enabling the system to begin tracking their precise
location on the map (Figure 3d). BLV users can then select a desti-
nation from nearby POIs and begin receiving navigation feedback
through the app.

Figure 7 shows the StreetNav app’s user interface, which uses
audiohaptic cues for (i) providing routing instructions, (ii) prevent-
ing veering off track, (iii) notifying about nearby obstacles, and
(iv) assisting with crossing streets. Upon reaching the destination,
the app confirms their arrival. The following sections describe the
app’s interface in detail.

Providing routing instructions. The app conveys routing in-
structions to the users by first giving an overview of the route and
then announcing each instruction, in situ, based on their current
location in the environment. Figure 7a shows the app screen with
the path overview. Prior work on understanding BLV people’s nav-
igation behaviors [1, 24, 30] reveals that BLV people often prepare
for their routes before actually walking through them. StreetNav
assists them in this preparation by giving an overview of the path
before beginning navigation. The path overview consists of several
instructions, with each helping them get from one waypoint to the
next. BLV users read through the path overview using VoiceOver [7].
Users then tap the ‘Start Navigation’ button, which announces each
instruction when they reach a waypoint. Figure 7b–f shows how the
app dynamically updates the next instruction based on the user’s
location in the environment. Throughout the journey, users can
access the path overview and the current navigation instructions
on demand via VoiceOver.

Preventing veering off track. Figure 8 illustrates the app’s feed-
back for preventing users from veering off track. Given the user’s
current position, heading, and destination route, StreetNav com-
putes the direction and extent of veering. To convey direction of
veering, we used 3D spatialized sound, which plays continuous
beeping sounds from the right speaker when users veer to the left
(Figure 8a) and from the left speaker when users veer to the right
(Figure 8c). Users can follow the direction of the beeping sound
to correct for veering. To convey the extent of veering. i.e., how
severely the user is veering, we render the frequency of beeps to
be proportional to the angle between the user’s current heading
and the route. As users veer away from the correct direction, the
frequency of beeps increases; and when they begin to turn towards
the correct direction, the frequency of beeps decreases. Users can
also leverage the frequency of beeps to determine how to correct
for veering, by always moving in the direction where the beeps’
frequency reduces. This enables users to correct for veering even
without the spatialized sound feedback we used for direction. This
eliminates the need to wear headphones to understand spatialized
sound.
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Figure 7: The StreetNav App’s user interface. It provides routing instructions to their destination via (a) a path overview and (c,
e) real-time feedback that updates their current instruction based on their location. Upon reaching a sidewalk, (b) the app
informs the user about when it is safe to cross and (d) how much remains for them to cross over. It also (d) notifies the user of a
nearby obstacle’s category and relative location to help them avoid it. The app (f) confirms the user’s arrival at the destination.
Throughout the journey, the app provides (g) continuous audiohaptic feedback to prevent users from veering off track.

We ran pilot experiments to test this feedback mechanism with
our BLV co-author. We found that the continuous audio feedback
was helpful but also became overwhelming as it forced them to
strictly follow StreetNav’s route. To address this, we relaxed the
veering requirements by introducing a tolerance angle (𝜃 ). Figure 8
shows the tolerance angle in green color, which is depicted as a
cone centered at the user’s current heading. We updated the veering
feedback to only play beeping sounds when users veer off in either
direction by at least 𝜃/2 degrees. To maintain the continuity of
feedback, we chose to render subtle haptic vibrations when users
move in the correct direction within the tolerance angle. Within
this tolerance angle, the intensity of the haptic vibration increases
when users approach the exact correct heading and decreases when
they start to veer off. This is similar to how the frequency of beeps
increases when users veer away. In this way, the audio feedback
acts as negative reinforcement, and the haptic feedback acts as
positive reinforcement. Figure 8b illustrates the haptic feedback.
We experimentally tuned the tolerance angle, 𝜃 , and set its value
for our system to 50◦.

To generate the audiohaptic cues, the app receives the user’s
current position and destination route from the computer vision
pipeline. For the user’s current heading, we experimented using the

user’s trajectory to predict their heading using the Kalman filter.
This approach, however, yields inaccurate headings due to the
noisy tracking data. Thus, we leveraged the smartphone’s compass
to determine the user’s current heading. We offset the compass
readings by a fixed value to ensure that its zero coincides with the
map’s horizontal direction. This enabled us to perform all heading-
related computations with respect to the map’s frame of reference.

Notifying about nearby obstacles. Figure 7d shows how Street-
Nav alerts the user of obstacles nearby. The app announces the
obstacle’s category, distance, and relative location. For example,
when a car approaches the user, the app announces: “Caution! Car,
4 ft. to the left.” Similar to veering feedback, the relative location is
computed using both the computer vision pipeline’s outputs and
the smartphone’s compass reading.

We tried feedback formats with varying granularity to convey
the obstacle’s relative location. First, we experimented with clock-
faced directions: “Car, 4 ft. at 1 o’clock.” Clock-faced directions are
commonly used in many GPS-based systems such as BlindSquare to
convey directions. We learned from pilot evaluations with our BLV
co-author that this feedback format was too fine-grained, as it took
them a few seconds to decode the obstacle’s location. This does not
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Figure 8: Audiohaptic cues for preventing users from veering
off track. Sample user trajectories showing feedback when
users (a) veers to the left, (b) do not veer, and (c) veer to the
right.When the user’s heading coincideswith the route to the
destination, within a tolerance angle 𝜃 (highlighted in green),
users receive (b) subtle haptic vibrations to reinforce them.
When they veer off the route, outside the tolerance angle 𝜃 ,
they hear spatialized beeping sounds that are rendered from
the (a) right speaker when veering left, and from the (c) left
speaker when veering right.

fare well with moving obstacles, such as pedestrians, that may have
already passed the user before they are able to decode the location.
Moreover, StreetNav’s goal with obstacle awareness is to give users
a quick idea that something is nearby them, which they can then
use to circumnavigate via their mobility skills. To address this, we
tried the more coarse format with just four directions: left, right,
front, and back. This was found to give users a quick intimation,
compared to the clock-faced directions.

Assisting with crossing streets. The StreetNav app helps users
cross streets by informing them when to cross and how much time
remains before the signal changes.

Figure 7b and Figure 7d illustrate the feedback. Upon reaching
a sidewalk corner, the app checks for the signal state recognized
by the computer vision pipeline. If the signal is ‘wait’ when the
user arrives, the app informs the user to wait along with the time
remaining before the signal changes. If the signal is ‘walk’ when the
user arrives, the app informs the user to begin crossing only if the
time remaining is sufficient for crossing. For the intersection used
in our user studies, this was experimentally found to be 15 seconds.
Otherwise, the user is advised to wait for the next cycle. Once the
user begins crossing on the ‘walk’ signal, the app announces the
time remaining for them to cross over. This feedback is repeated at
fixed intervals until the user reaches the other sidewalk corner. We
experimentally fine-tuned this interval with feedback from our BLV
co-author. We tried several intervals, such as 5, 10, and 15 seconds,
and found that shorter intervals overwhelmed the users, whereas
longer intervals practically would not be repeated enough times
to give them meaningful information. We settled on repeating the
feedback every 10 seconds for our implementation.

5 USER STUDY
Our user study had three goals, related to RQ2 and RQ3. First, we
wanted to evaluate the extent to which StreetNav addressed BLV

Figure 9: The routes used in the navigation tasks. (A) 12 me-
ters, stationary person to avoid on the sidewalk. (B) 30meters,
cross street, and moving person to avoid on the sidewalk. (C)
38meters, a 90◦ turn, cross street, andmoving person to avoid
on the crosswalk. To mitigate learning effects, routes for the
two conditions are symmetrically designed, situated on op-
posite sides of the street.

pedestrians’ challenges in navigating outdoor environments when
using existing GPS-based systems. Through our formative inter-
views (Section 3), we discovered three main challenges: routing
through complex environment layouts (C1), avoiding unexpected
obstacles (C2), and crossing street intersections (C3). Second, we
wanted to analyze BLV pedestrians’ experience of navigating out-
doors using StreetNav compared to existing GPS-based systems.
Third, we wanted to see how participants rank the two naviga-
tion systems—StreetNav vs. GPS-based system—in order of their
preference for outdoor navigation assistance.

5.1 Study Description
Participants. We recruited eight BLV participants (five males,
three females; aged 24–52) by posting to social media platforms
and by snowball sampling [22]. Participants identified themselves
with a range of racial identities (Asian, Black, White, Latino, and
Mixed) and all of them lived in a major city in the US. Participants
also had diverse visual abilities, onset of vision impairment, and
familiarity with assistive technology (AT) for navigation.

Table 2 summarizes participants’ information. All but three par-
ticipants (P1, P7, and P8) reported themselves as being moderately–
extremely experienced with AT for navigation (3+ scores on a
5-point rating scale). Only P3 reported minor hearing loss in both
ears and wore hearing aids. All participants except two (P2, P9) used
white cane as their primary mobility aid. P2 did not use any mo-
bility aid, while P9 primarily used a guide dog for navigation. The
IRB-approved study lasted for about 120 minutes, and participants
were compensated $75 for their time.

Experimental Design. In the study, participants completed three
navigation tasks at a street intersection in two conditions: (i) Street-
Nav and (ii) BlindSquare [41], a popular GPS-based navigation
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Table 2: Self-reported demographics of our study participants. Gender information was collected as a free response. Participants
rated their familiarity with assistive technology (AT) on a scale of 1–5.

PID Age Gender Occupation Race Vision ability Onset Mobility aid AT familiarity (1–5)
P1 24 Male App developer Asian Low vision Age 19 White cane 2: Slightly familiar
P2 28 Male Data manager White Low vision At birth None 3: Moderately familiar
P3 48 Male Not employed Black Totally blind Age 32 White cane 3: Moderately familiar
P4 46 Female Social worker Latino Totally blind Age 40 White cane 4: Very familiar
P5 43 Female Not employed Asian Totally blind At birth White cane 4: Very familiar
P6 52 Male Mgmt. analyst Mixed Light perception only Age 9 White cane 5: Extremely familiar
P7 26 Female Writer Mixed Low vision At birth White cane 2: Slightly familiar
P8 51 Male Not employed Black Light perception only Age 26 Guide dog 3: Moderately familiar

app especially designed for BLV people. We evaluated the two
systems via their respective iOS apps on an iPhone 14 Pro. Both
systems’ apps seamlessly integrated with VoiceOver, and all eight
participants had a high level of familiarity with using iPhones and
VoiceOver, with ratings of 3 or higher on a 5-point scale. During
the study, participants continued to use their primary mobility
aids, such as white canes and guide dogs, in both conditions. This
approach allowed us to make a meaningful comparison between
StreetNav and the BLV pedestrians’ current methods of outdoor
navigation, simulating their usual practice of incorporating GPS-
based navigation systems alongside their mobility aids.

Our study followed a within-subjects design, in which partic-
ipants tested the two navigation systems in a counter-balanced
order to minimize potential order-bias and learning effects. In each
condition, participants were tasked with completing three distinct
navigation challenges, corresponding to three specific routes. Fig-
ure 9 illustrates these three navigation routes.We deliberately chose
the routes to lie within the street camera’s field of view and include
a range of difficuly levels for each task: (A) a short route, 12 meters,
that involved avoiding a stationary person on the sidewalk, (B) a
long route, 30 meters, that involved crossing a street and avoiding a
moving person on the sidewalk, and (C) a complex route, 38 meters,
that involved making a 90 degree turn, crossing a street, and avoid-
ing a moving person on the crosswalk. For each of these tasks, one
of our researchers assumed the role of the obstacle. Notably, none
of the participants were familiar with the specific street intersection
selected as the study’s location.

Given that participants navigated the same intersection in both
conditions, the potential for learning effects as a confounding factor
was carefully considered. To address this concern, we took deliber-
ate measures by creating distinct routes for each condition. Specifi-
cally, we designed the routes in both conditions to be symmetric—
rather than being identical—with the starting and ending points of
each route strategically positioned on opposite sides of the street
intersection, as illustrated in Figure 9. The symmetry of routes
ensured that participants encountered the same challenges in both
conditions. To ensure participants’ safety, the researchers accom-
panied them at all times during the study, prepared to intervene
whenever necessary.

Procedure. We began each study condition by giving a short tuto-
rial of the respective smartphone app for the system. During these

tutorials, participants were taught how to use the app and how to
interpret the various audiohaptic cues it offered. To accommodate
potential challenges arising from ambient noise at the street inter-
section, participants were given the option to wear headphones
during the study. Only two participants, namely P3 and P5, exer-
cised that option; rest of the participants relied on the smartphone’s
built-in speaker to hear the audiohaptic cues.

After completing the three navigation tasks for each condi-
tion, we administered a questionnaire comprising four distinct
parts. These parts were designed to assess participants’ experiences
around challenges faced by BLV pedestrians in outdoor navigation,
specifically addressing the following aspects: routing to destina-
tion (C1), veering off course (C1), avoiding obstacles (C2), and
crossing streets (C3). It included questions about how well each
system assisted with the challenges, if at all. Participants rated their
experience on a 5-point rating scale, where a rating of “1” indicated
“not at all well,” and a rating of “5” indicated “extremely well.” After
each part of the questionnaire, we asked follow-up questions to
gain deeper insights into the reasons behind their ratings and their
overall experiences.

Following their experience with both navigation systems, par-
ticipants were asked to complete a post-study questionnaire. This
questionnaire required them to rank the two navigation systems in
terms of their preference for outdoor navigation. Subsequently, we
directed our discussion toward StreetNav, engaging participants in
a conversation about potential avenues for improvement. We also
inquired about the specific scenarios in which they envision using
this system in the future.

In addition to the questionnaires that aimed at capturing partici-
pants’ subjective experiences, we also gathered system usage logs
and video recordings of participants throughout the study. These
objective data sources, including usage logs and video recordings,
allowed us to perform a comprehensive analysis of participants’
actual performance in the navigation tasks. It is worth noting that
willingness to be video-recorded was completely voluntary, i.e.,
did not affect participants’ eligibility or compensation. All eight
participants still agreed to be video-recorded, providing us with
written consent to do so.

Analysis. We report participants’ spontaneous comments that best
represent their overall opinions, providing further context on the
quantitative data we collected during the study. We analyzed the
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(a) StreetNav (b) BlindSquare

Figure 10: Comparison of paths traveled by three participants (P1, P3, P8) for route ‘C’ using (a) StreetNav, and (b) BlindSquare.
StreetNav’s routing instructions consistently guided participants to the destination via the shortest path. BlindSquare, however,
caused participants to take incorrect turns (P1, P3, P8), oscillate back and forth near destinations (P1, P8), and even go around
the whole intersection before getting close to the destination (P8).

Figure 11: Results for participants’ experiencewith routing to
the destination. Participants rated the (1) usefulness of rout-
ing instructions, and (2) the system’s ability to track them en
route to the destination. Participants found StreetNav’sturn-
by-turn instructions significantly more useful and precise
than BlindSquare’s “as the crow flies”-style routing instruc-
tions. Pairwise significance is depicted for 𝑝 < 0.01 (∗) and
𝑝 < 0.05 (∗∗). The error bars indicate standard error.

transcripts for participants’ quotes and grouped them according to
the (i) questionnaire’s four parts: routing to destination, veering
off course, avoiding obstacles, and crossing streets; (ii) overall sat-
isfaction and ranking preferences, and (iii) how users’ individual
experiences influenced their preferences.

5.2 Results
Our results reveal that StreetNav helped participants reach their des-
tinations with more precision, gain awareness of obstacles, reduce
veering off course, and confidently cross streets. For the statistic
analysis of eachmeasure, we first conducted a Kolmogorov-Smirnov
test to determine if the data was parametric or non-parametric.
Then, when comparing between the two conditions, we used a
paired t-test when the data was parametric. In addition to quantita-
tive measures, we conducted a detailed analysis of video recordings,
manually annotating the routes participants took during the study.
We provide these metrics to offer additional insights into partici-
pants’ performance across both experimental conditions.

Routing to Destination. Figure 11 shows participants’ average
rating for their experience following routes to the destination in
each condition. The mean (± std. dev.) rating for participants’ per-
ceived usefulness of the routing instructions in guiding them to
the destination was 4.13 (±0.64) for StreetNav and 2.38 (±0.91) for
BlindSquare. The condition had a significant main effect (𝑝 = 0.014)
on participants’ experience reaching destinations with the routing
instructions. The mean (± std. dev.) rating for participants’ expe-
rience with the system’s ability to track them was 4.50 (±0.76)
for StreetNav and 2.88 (±1.13) for BlindSquare. The condition had
a significant main effect (𝑝 = 0.001) on participants’ perception
of how well the system tracked them en route to the destination.
This indicates that participants found StreetNav more useful than
BlindSquare for guiding them to the destination.

Figure 10 illustrates our analysis of the video recordings, plotting
the typical paths taken by participants in the third route across
both conditions. We computed various metrics from their paths,
that provide insights into participants’ self-reported ratings.

We found that when using BlindSquare, participants covered
greater distances to reach the same destinations compared to when
using StreetNav. On average, participants traveled a distance ap-
proximately 2.1 times longer than the shortest route when relying
on BlindSquare. In contrast, when using StreetNav, they covered a
distance of only about 1.1 times the shortest route to their destina-
tion. This represents a 51% reduction in the unnecessary distance
traveled with StreetNav in comparison to BlindSquare. Figure 10b
shows how participants using BlindSquare often exhibited an os-
cillatory pattern near their destinations (P1, P8) before eventually
reaching close to them.

Additionally, StreetNav’s routing instructions displayed a no-
tably higher level of precision, guiding participants to their destina-
tions with 2.9 times greater accuracy than BlindSquare. Figure 10
clearly shows this trend for the third route. On average, across
the three study routes, participants using StreetNav concluded
their journeys within a tighter radius of 12.53 feet from their in-
tended destination. In contrast, participants relying on BlindSquare
concluded their journeys within a radius of 35.94 feet from their
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Figure 12: Results for participants’ perceived ability to pre-
vent veering off path. Participants rated their ability to (1)
maintain a straight walking path, and (2) intuitiveness of
the feedback regarding direction they should be moving in;
on a scale of 1–5. StreetNav’saudiohaptic feedback was sig-
nificantly more intuitive than BlindSquare’s in preventing
participants from veer off path. Pairwise significance is de-
picted for 𝑝 < 0.01 (∗). The error bars indicate standard error.

intended destination. Two study participants, P4 and P5, even re-
fused to navigate to the destination in two of the three tasks with
BlindSquare. This was primarily attributed to BlindSquare’s low
precision in tracking the participants and often guiding them to
take incorrect turns. Figure 10b highlights how BlindSquare caused
P8 to go around the intersection before finally getting close the
destination.

Participants preferred StreetNav over BlindSquare for its audio-
haptic cues for turn-by-turn navigation instructions, which they
found to be more useful and precise than BlindSquare’s “as the
crow flies”-style clock face and distance-based instructions. P3’s
comment encapsulates this sentiment:

“When it’s time for me to turn right and walk a certain
distance, [StreetNav] is very, very, very precise.” –P3

Although all participants preferred StreetNav’s routing feedback
over BlindSquare’s, distinct patterns emerged in their preference
and utilization of these cues. StreetNav delivers a combination
of audiohaptic and speech feedback for routing, and participants
adopted varying strategies for utilizing this feedback. Some indi-
viduals placed greater reliance on the veering haptic feedback as
their primary directional guide, while reserving speech feedback
as a fallback option. Conversely, some participants prioritized the
speech feedback, assigning it a higher level of importance in their
navigation process compared to audio-haptic cues.

Veering Prevention. Figure 12 shows participants’ average rat-
ing for their perceived ability to (1) maintain a straight walking
path, i.e., prevent veering off course, and (2) intuitiveness of the
feedback they received regarding direction to move in. The mean
(± std. dev.) rating of participants’ perceived ability to maintain a
straight walking path with StreetNav was 4.63 (±0.52) and with
BlindSquare was 2.75 (±1.17). The condition had a significant main
effect (𝑝 = 0.001) on participants’ perceived ability to prevent veer-
ing off course. The mean (± std. dev.) rating for intuitiveness of the
feedback that helped them know which direction to move in was
4.63 (±0.52) for StreetNav and 3.00 (±0.76) for BlindSquare. The
condition had a significant main effect (𝑝 = 0.006) on intuitiveness
of feedback that helped participants prevent veering off path.

Our examination of the video recordings aligns closely with par-
ticipants’ ratings. It reveals that StreetNav minimized participants’
deviations from the shortest path to the destinations in comparison
to BlindSquare. Over the course of the three routes, participants
displayed an average deviation from shortest path, that was reduced
by 53% when using StreetNav as opposed to BlindSquare.

With BlindSquare, many participants reported difficulty main-
taining awareness of their surroundings, including both obstacles
and navigation direction, which frequently led to deviations from
their intended paths. For instance, P2 reported challenges in main-
taining their orientation with the need to avoid obstacles:

“[BlindSquare] basically demanded me to keep track of
my orientation as I was moving, which is pretty difficult
to do when you’re also trying to keep other things in
mind, like not bumping into things.” –P6

In contrast, StreetNav effectively addressed this challenge by pro-
viding continuous audiohaptic feedback for maintaining a straight
walking path, instilling a sense of confidence in participants. P3,
who tested StreetNav before BlindSquare, reflected on their desire
for a similar continuous feedback mechanism within BlindSquare,
akin to the experience they had with StreetNav:

“[with BlindSquare] even though I couldn’t see the phone
screen, my eyes actually went towards where I’m hold-
ing the screen. It is almost as if on a subconscious level,
I was trying to get more feedback. With [StreetNav] I
had enough feedback.” –P3

Many participants appreciated StreetNav’s choice of haptic feed-
back for veering. Some participants envisioned the haptic feedback
to be especially useful in environments with complex layouts:

“In the [areas] where the streets are very slanted and
confusing. I think haptic feedback will be especially
helpful.” –P5

Other participants highlighted the advantage of haptic feedback
in noisy environments where audio and speech feedback might be
less effective.

However, both P4 and P6 exclaimed that StreetNav’s haptic feed-
back would only work well when holding the phone in their hands.
This meant that hands-free operation of the app may not be pos-
sible, which is important for BLV people since one of their hands
is always occupied by the white cane. P4 proposed integrating the
app with their smartwatch for rendering the haptic feedback to
enable hands-free operation.

Obstacle Awareness. Figure 13 shows participants’ average rating
for their perceived awareness of obstacles across the two conditions.
Specifically, participants rated their ability to (1) avoid obstacles,
(2) identify its category (e.g., person, bicycle, trash can), and (3)
determine its relative location. The mean (± std. dev.) rating for
participants’ perceived ability to avoid obstacles was 4.38 (±0.74) for
StreetNav and 2.88 (±0.99) for BlindSquare, to identify its category
was 4.50 (±0.76) for StreetNav and 3.13 (±1.46) for BlindSquare,
and to determine obstacle’s relative location was 4.13 (±0.64) for
StreetNav and 2.88 (±1.25) for BlindSquare. A paired t-test revealed
that the condition had a significant main effect on participants’
perceived ability to avoid obstacles (𝑝 = 0.030), identify its category
(𝑝 = 0.037), and relative location (𝑝 = 0.004). This suggests that
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Figure 13: Results for participants’ perceived obstacle aware-
ness. Participants rated their ability to (1) avoid obstacles, (2)
identify its category (e.g., person, bicycle), and (3) determine
its relative location; on a scale of 1–5. StreetNav significantly
improved participants’ awareness of nearby obstacles during
navigation. Pairwise significance is depicted for 𝑝 < 0.01 (∗)
and 𝑝 < 0.05 (∗∗). The error bars indicate standard error.

StreetNav offered users a heightened awareness of nearby obstacles
compared to the baseline condition of BlindSquare.

With StreetNav, participants had the option to use obstacle avoid-
ance audio feedback in conjunctionwith their conventionalmobility
aids. However, in the case of BlindSquare, the system itself did not
offer any obstacle-related information. Consequently, participants
primarily relied on their traditional mobility aids in this condition,
as is typical when using GPS-based systems. Our analysis of the
video recordings found that in both experimental conditions, par-
ticipants encountered no instances of being severely hindered by
obstacles. Instead, they adeptly navigated around obstacles with
the assistance of their white canes or guide dogs.

Although participants generally had a positive perception of
obstacle avoidance when using StreetNav, their opinions on the
utility of obstacle awareness information varied. Some participants
found this information beneficial, emphasizing its role in preventing
“awkward bumping into people” (P2) and boosting their confidence,
resulting in greater “speed in terms of walking” (P3). Conversely, par-
ticipants who felt confident avoiding obstacles with their mobility
aids regarded StreetNav’s obstacle information to be extraneous. P8
also expressed concerns about the potential information overload
it could cause in dense urban areas:

“To know where people are, is a bit of overkill. If you
turn this thing on in Times Square, it would have your
head go upside down.” –P8

Many participants proposed an alternative use case for Street-
Nav’s obstacle awareness information, highlighting its potential
for providing insights into their surroundings. They suggested that
this information could unlock environmental affordances, including
the identification of accessible light signals and available benches
for resting: “knowing there was a bench was top-notch for me” (P8).
Therefore, StreetNav’s obstacle awareness information served a
dual purpose, aiding in both obstacle avoidance and environmental
awareness, allowing users to “know what’s around”(P8) them.

Crossing Streets. Figure 14 shows participants’ average rating for
their perceived comfort in crossing streets. The mean (± std. dev.)

Figure 14: Results for participants’ perceived comfort in cross-
ing streets. Participants rated their perceived comfort in (1)
making the decision onwhen to begin crossing the street, and
in (2) pacing themselves when crossing. Participants were
significantly more comfortable crossing streets with Street-
Nav in comparison to BlindSquare. Pairwise significance is
depicted for 𝑝 < 0.01 (∗) and 𝑝 < 0.05 (∗∗). The error bars
indicate standard error.

rating of participants’ perceived comfort in making the decision on
when to begin crossing the street was 4.50 (±0.76) for StreetNav
and 2.88 (±1.64) for BlindSquare. The mean (± std. dev.) rating of
participants’ perceived comfort in safely making it through the
crosswalk and reach the other end was 4.63 (±0.52) for StreetNav
and 2.00 (±1.41) for BlindSquare. A paired t-test showed that the
condition had a significant main effect on participants’ comfort in
beginning to cross streets (𝑝 = 0.029) and in safely making it to the
other side (𝑝 = 0.001).

As BlindSquare does not provide feedback specifically for cross-
ing streets, participants reported relying on their auditory senses,
listening for the surge of parallel traffic. However, during the semi-
structured interviews, some participants highlighted challenging
scenarios that can make this strategy less reliable. P4, for instance,
pointed out that ironically, less traffic can complicate street cross-
ings:

“I don’t always know when to cross because it’s so quiet.
And sometimes two, three light cycles go by, and I’m
just standing there.” –P4

This issue has been exacerbated by the presence of electric cars,
which are difficult to hear due to their quiet motors. For P3, their
hearing impairments made it challenging to listen for traffic. Thus,
most participants appreciated StreetNav’s ability to assist with
crossing streets:

“When it’s quiet, I would cross. But now with hybrid
cars, it’s not safe to do that. [StreetNav] app telling you
which street light is coming on is really helpful.” –P7

Participants made decisions to cross the streets by combining
StreetNav’s feedback with their auditory senses. Many participants
emphasized that having information about the time remaining to
cross significantly boosted their confidence, especially when this
information aligned with the sounds of traffic: “I thought it was
great because I could tell that it matched up” (P8). This alignment
between the provided information and their sensory perception
inspired confidence in participants:

“Relying on my senses alone feels like a gamble about
90 percent of the time, so a system like [StreetNav] that
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accurately displays the amount of time I have to cross
the street is great.” –P2

5.3 Forced Ranking Results
All eight participants unanimously chose StreetNav over Blind-
Square as their preferred navigation assistance system. We asked
participants to also rank their preferred type of routing instructions.
All eight participants strongly preferred StreetNav’s turn-by-turn
routing instructions compared to BlindSquare’s “as the crow flies,”
direction and distance-style routing instructions.

In the semi-structured interview, participants were asked to
elaborate on their rankings. Participants pointed out multiple nav-
igation gaps in BlindSquare, with P2 summarizing participants’
sentiment:

“If you’re only getting somebody 90 percent of the way
there, you’re not really achieving what I would consider
to be the prime functionality of the system.” –P2

In contrast, participants praised StreetNav for its precision and real-
time feedback, emphasizing the importance of granular and holistic
information to support all facets of navigation. However, partici-
pants did acknowledge occasional “glitchiness” (P7) with StreetNav,
which occurred when they moved out of the camera’s field of view
or were occluded by other pedestrians or vehicles, resulting in lost
tracking. Nevertheless, participants still regarded StreetNav as a
significant enhancement to their typical navigation experiences,
expressing increased confidence in exploring unfamiliar outdoor
environments in the future.

“It would encourage me to do things that I would not
usually... It would make me more confident about going
out by myself.” –P4

Participants also appreciated StreetNav’s ability to identify them
in near real-time:

“What I found very interesting about the connection
part is how quickly it identifies where I am, as soon as I
waved my hand, it senses me.” –P3

Participants also provided suggestions for improving StreetNav.
Some participants wanted a hands-free version that would allow
them to hold a white cane in one hand while keeping the other
free. Additionally, while they found the gesture of waving hands for
connecting with the system socially acceptable, they acknowledged
that it might be perceived as somewhat awkward by others in the
street.

“[Waving a hand] may seem kind of weird to people
who don’t understand what is going on. But for me
personally, I have no issue.” –P3

While the gesture-based localization was generally accurate, there
were instances where other pedestrians were incorrectly detected
as the study participant. On average, the gesture-based localization
worked accurately over 90% of the time.

5.4 How Individual Experiences Influenced
Participants’ Preferences

Throughout the study, participants offered feedback based on their
unique backgrounds. We observed distinct patterns in their prefer-
ences, affected by their (i) onset of vision impairment, (ii) level of
vision impairment, and (iii) familiarity with assistive technology.

Onset of vision impairment. Participants with early onset blind-
ness preferred nuanced, concise feedback with an emphasis on
environmental awareness. They used the system as an additional
data point without complete reliance. In contrast, participants with
late onset blindness trusted the system more and relied heavily on
its feedback.

Level of vision impairment. Totally blind participants appreci-
ated the veering feedback, while low-vision users, who had more
visual information, relied on their senses and did not need as much
assistance with veering. Low-vision participants appreciated the
street crossing feedback rather than trying to glean information
from pedestrian signals across the street. Totally blind participants
relied more on listening for parallel traffic—their usual mode of
operation—and used StreetNav’s street-crossing feedback as a con-
firmation.

Familiarity with assistive technology (AT). We noticed that
participants who commonly use AT for navigation quickly adapted
to StreetNav, while those with less experience hesitated in trusting
StreetNav’s feedback and had a slightly steeper learning curve. Still,
all participants mentioned feeling more comfortable with Street-
Nav as the study progressed. Both groups also expressed increased
confidence in exploring new areas with StreetNav.

6 DISCUSSION
Our goal with StreetNav was to explore the idea of repurposing
street cameras to support precise outdoor navigation for BLV pedes-
trians. We reflect upon our findings to discuss how street camera-
based systems might be deployed at scale, implications of a street
camera-based navigation approach for existing GPS-based navi-
gation systems, and the affordances enabled by precise, real-time
outdoor navigation assistance.

Deploying street camera-based navigation systems at scale.
StreetNav demonstrates that street cameras have the potential to
be repurposed for supporting precise outdoor navigation for BLV
pedestrians. Our study results show that street camera-based navi-
gation systems can guide users to their destination more precisely
and prevent them from veering off course (Figure 10). Our results
also show that street camera-based systems can support real-time,
scene-aware assistance by notifying users of nearby obstacles (Fig-
ure 13) and giving information about when to cross streets (Fig-
ure 14). These benefits of a street camera-based approach, over
existing GPS-based systems, underscores the need for deploying
such systems at scale. Although our system, StreetNav, was de-
ployed at a single intersection, we learned insights on potential
challenges and considerations that must be addressed to deploy
street camera-based systems at scale.

Several internal and external factors need to be considered be-
fore street cameras can be effectively leveraged to support blind
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navigation at scale. External factors, including lighting conditions
and occlusions on the street, may affect system performance. For
instance, we noticed that StreetNav’s ability to track pedestrians
was affected severely in low-light conditions (e.g., at night) and by
occlusions due to the presence of large vehicles (e.g., trucks, buses)
and the installation of scaffoldings for construction. Such challenges
affect the reliability of street camera-based systems and may limit
its operational hours. Internal factors, including the positioning of
cameras, their field of view, and variability in resolution, may affect
the extent to which such systems can promise precise navigation
assistance. For instance, the visibility of the pedestrian signals from
the camera feed could affect how much such systems can assist
users with crossing streets. With StreetNav, we observed a drop in
tracking accuracy as individuals and objects moved further away
from the camera.

Therefore, deploying street camera-based systems at scale would
require future work to investigate the extent to which both external
factors (e.g., lighting, occlusions) and internal factors (e.g., camera
resolution) affect system performance and reliability. To address
some of the technical limitations around tracking performance and
field of view limitations, future research could explore integrating
multiple cameras at various elevations and viewing angles. Prior
work on robot navigation has explored the fusion of multiple cam-
eras to improve tracking performance [10, 48, 51]. Future work
could also explore an ecosystem of accessible street cameras that
can share information to automatically manage hand-offs across
street intersections, providing users with a seamless experience
beyond a single street intersection. Such ecosystems, which span
beyond one intersection to a whole district or city, could enable
new affordances, such as automatically sensing pedestrian traffic
to inform traffic signals and vice versa [35].

Implications for GPS-based navigation systems. When cam-
eras are available, and conditions align favorably, street camera-
based systems offer BLV individuals a valuable source of fine-
grained, high-precision information, significantly enhancing their
navigational experience and environmental awareness. These capa-
bilities are currently beyond the reach of conventional GPS-based
systems. All eight study participants unanimously chose StreetNav
over BlindSquare as their preferred navigation system due to its
precise, scene-aware navigation assistance (Section 5.3). However,
it’s important to acknowledge that street camera-based systems
have their own set of limitations. The widespread availability of
street cameras is not yet a reality, and ideal conditions may not
always be met for their effective use. In contrast, GPS-based sys-
tems, while lacking in precision and environmental awareness, are
universally accessible and resilient in varying conditions, includ-
ing low light. A harmonious integration of these two approaches
is a promising solution. Users can tap into street-camera infor-
mation when conditions permit, seamlessly transitioning to GPS
data when necessary. This can be facilitated through sensor fu-
sion or information hand-offs, creating a synergy that ensures a
smooth and reliable navigational experience. Future approaches
could explore how these two systems can effectively complement
each other, addressing their respective limitations and enhancing
overall performance.

Affordances of precise outdoor navigation assistance for BLV
people. Previous research in indoor navigation has demonstrated
the advantages of accurately pinpointing users’ locations [2, 34,
57] and providing scene-aware navigational information [25, 33].
However, achieving such precision has remained a challenge in
outdoor environments, primarily due to the limited accuracy of GPS
technology [23]. StreetNav’s approach of leveraging existing street
cameras demonstrates that precise outdoor navigation support for
BLV pedestrians is possible. Our study reveals the advantages of
precise, fine-grained navigation for BLV individuals. These benefits
include a substantial reduction in instances of veering and routing
errors, such as deviation from the shortest path or missing intended
destinations, as well as augmented environmental awareness.

StreetNav offered our participants a glimpse into the potential
of precise outdoor navigation. Several participants desired even
greater precision, including the ability to discern the exact num-
ber of steps remaining before reaching a crosswalk’s curb. Future
research could delve into exploring how to best deliver such granu-
lar feedback to BLV users, alongside the necessary technological
advancements needed to achieve this level of precision. These ad-
vantages, as our findings suggest, extend beyond merely improv-
ing navigation performance. Participants shared insights into how
precise navigation could enhance their independence when navi-
gating outdoors. It could empower BLV people to venture outdoors
more frequently, unlocking new travel opportunities, as exempli-
fied by P3’s newfound confidence in using public transportation
with StreetNav-like systems:

“I don’t really use the city buses, except if I’m with
somebody, but [StreetNav] would make me want to get
up, go outside, and walk to the bus stop.” –P3

This newfound confidence is particularly noteworthy, considering
the unpredictable nature of outdoor environments. Future research
could explore new affordances that street camera-based systems
can enable for people, in general.

7 LIMITATIONS
Our work revealed valuable insights into the benefits and effec-
tiveness of a new approach that uses existing street cameras for
outdoor navigation assistance. At the same time, we acknowledge
that our work has several limitations.

StreetNav was developed using a single street camera and tested
at a single street intersection. This approach means that there might
be other technical hurdles and design considerations we didn’t en-
counter due to the constraints of this setup. Future research could
expand upon our design and investigate how street camera-based
systems can adapt to different environments and challenges. Fur-
thermore, to ensure the safety of participants and to fit the user
study within a 120-minute timeframe, we designed the study routes
to be less complex and dangerous. Real-world outdoor environ-
ments can vary significantly from one part of a city, state, or country
to another. Our study location may not fully capture the diversity
of scenarios BLV individuals encounter when navigating outdoors.
Lastly, it’s important to note that our study sample consisted of only
eight BLV individuals. While their insights are valuable, their pref-
erences for outdoor navigation may not represent the broader BLV
community’s perspectives. StreetNav was developed in response



arXiv, September, 2023 Jain et al.

to the challenges identified in our formative study, but there could
be additional challenges and design possibilities that we haven’t
explored. Future research should consider a more extensive and di-
verse participant pool to gain a more comprehensive understanding
of the needs and preferences within the BLV community.

8 CONCLUSION
We explored the idea of leveraging existing street cameras to sup-
port precise outdoor navigation for BLV pedestrians. Our resulting
system, StreetNav, addresses BLV people’s challenges in outdoor
navigation when using GPS-based systems. Our user evaluation re-
vealed StreetNav’s potential to guide users to their destination more
precisely than existing GPS-based systems. It also demonstrated
its ability to offer real-time, context-aware navigation assistance,
aiding in obstacle avoidance and safe street crossings. However,
we also uncovered various considerations for street camera-based
navigation systems, including challenges and opportunities in de-
ploying such systems at scale. These challenges pave the way for
future research to enhance the robustness and reliability of street
camera-based navigation solutions. Our work highlights the un-
tapped potential of embedding accessibility directly into urban
infrastructure by leveraging existing resources, such as street cam-
eras. We envision a future where such systems seamlessly integrate
into urban environments, providing BLV individuals with safe and
precise navigation capabilities, ultimately empowering them to
confidently navigate their surroundings.
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